Opportunities to Improve the NGSS
A Blog by Andy Zucker & Penny Noyce
http://ImproveTheNGSS.org

Note: This document includes all the NGSS blog posts in chronological order beginning with the earliest post.

Welcome to our blog
Posted November 23, 2019

Thank you for reading this blog. We will add posts several times each month, or even weekly. You can subscribe by clicking the link at the top of the right column.

Your participation in the conversation about science education standards can be important. Education standards are intended to meet the needs of a large number of individuals and groups. By the same token, changing standards requires widespread discussion before revisions are made.

We worked on the white paper “Opportunities to Improve the Next Generation Science Standards (the NGSS)” for more than six months before posting it on this website in late 2019, making the paper widely available. Earlier, several experts agreed to review a draft and provide comments, for which we are grateful. In future blog posts we will highlight some of the comments and suggestions we received from them and from others, and we invite you to offer your own comments on this blog.

We will also have space here to expand on ideas in the paper. For example, we will identify some of the instructional materials teachers can use now to better support the goal of developing students’ scientific literacy, a goal we identify as the most important reason to strengthen the NGSS.

Leave a comment or send us an email if you would like to write a post for this blog.

Andy and Penny

The NGSS is one piece of a bigger system
Posted December 6, 2019

Several reviewers noted that education standards like the NGSS are only one influence on classroom instruction, whether in science or other subjects. We heartily agree! Their comments are an important reminder.

The quality of science teachers, the support they receive, the amount of time allocated to teaching science, the nature of high-stakes tests, support of STEM education by parents and the community—these are just a sample of other important influences on teaching and learning science. One reviewer wrote, “I agree with the ultimate goals for raising scientifically literate students … but I question what new and improved standards will do without addressing the current lack of infrastructure to implement them.”
The white paper does not claim that improving the NGSS is the one and only way to improve science education. At the same time, the NGSS promotes an excessively narrow vision of science and scientific literacy, so we should not be surprised when many teachers adopt that narrow vision.

As an example, too many parents believe that vaccines cause autism. Students graduating high school ought to know that the Centers for Disease Control and Prevention (the CDC) is an excellent source of information about vaccine safety and about many other public health issues. Similarly, students should learn that the Intergovernmental Panel on Climate Change (the IPCC) is a primary source of information about the causes and the impacts of climate change. Organizations like the CDC and the IPCC are central to NGSS practice #8, “obtaining, evaluating, and communicating” science-related information, bringing together experts from many institutions to synthesize and vet scientific findings. Such institutions are one key mechanism for determining scientific consensus, if and when it exists. Yet the NGSS makes no mention of any scientific institution. Nor does it explain how science helps to inform public policy—about vaccines, climate, food safety, or other issues. This is short-sighted.

Improving the NGSS is no guarantee that science instruction will improve, yet guidance from national standards cannot be ignored merely because other factors are important, too.

Andy and Penny

One expert’s comments on the white paper
Posted December 9, 2019

We asked Professor John L. Rudolph to review a draft of the white paper. Professor Rudolph is chair of the Department of Curriculum and Instruction in the School of Education at the University of Wisconsin-Madison, where he educates future science teachers. His recent book How We Teach Science: What’s Changed and Why It Matters is a comprehensive history of American science education from the late nineteenth century to the present, making him exceptionally knowledgeable about how goals of science education have evolved over time.

After reviewing the paper, Professor Rudolph wrote:

“Thanks so much for sharing your white paper on revising the NGSS. I thought it was excellent. I have to say that it aligns almost exactly with my own critique of where science education is currently and where it’s heading under NGSS.... All the things you suggest I would heartily endorse. In fact, your outline of things neglected by NGSS closely parallels the syllabus of the science teaching methods course I teach every fall....

I think that we’re on the cusp of a change that will begin to prop up the legitimacy and authority of science given the way science and truth have been so thoroughly denigrated in the public sphere of late. Your work will, I think, be part of helping push things in that direction.... It helps that the paper is so very clear and readable too.”

We were optimistic when we asked reviewers for their comments, but frankly we were not sure what experts would think of the white paper. These comments from Professor Rudolph, and others, were encouraging to us. Without widespread support it is unlikely that science education standards will be improved.
Comments from another expert reviewer
Posted December 16, 2019

One of the experts who reviewed a draft of our white paper is Dr. Cary Sneider, an architect of the NGSS, and a member of the NGSS writing leadership team. His comments were extensive and generous, and began, “This is a nicely crafted article that should definitely be published.” Here are other highlights:

“I like a lot of what you said about how the NGSS could be improved I especially resonate with your comments about distinguishing truth from fiction (and outright lies).”

“A decision that I lament,” he wrote about development of the NGSS, was to leave out a core idea identified in the Framework for K-12 Science Education (the template for the NGSS), namely, ETS2 - Links among engineering, technology, science, and society. “Some of what you say has been left out [of the NGSS] is included in this core idea,” he said, and we agree. In particular our concern that the NGSS has nothing to say about the relation between science or technology and public policy would be addressed had the NGSS incorporated this core idea from the Framework. As leader of the engineering team of NGSS writers, Sneider takes full responsibility for this missing piece, and hopes it will be reinstated when it’s time to update the NGSS.

At the same time, Sneider, a retired researcher, museum educator, and visiting scholar at Portland State University, expressed a number of reservations about the recommendations offered in the white paper. “It takes more than a decade to implement a new set of standards, especially if they are quite different from what was there before. Also, some states have just recently adopted new standards,” he wrote. So, in his view it is too early to make significant changes to the NGSS. Others have made similar comments, noting how long it takes to fully implement new standards.

Some of the missing pieces we identified in the NGSS, Sneider wrote, are intentionally absent, notably discussion of key principles of science teaching. Although he agrees that appropriate classroom pedagogy is essential for effective science education, the purpose of the standards is just to state what students should know and can do at the end of instruction, and not specify any specific curriculum materials or teaching methods, leaving that up to state officials to provide guidance.

Another of Dr. Sneider’s reservations is that “everyone wants to add topics they think are missing,” but authors of the NGSS were trying to focus on fewer important topics rather than on too many topics taught quickly and ineffectively. “Prior standards have had more than any teacher can do in a year,” he noted. Anyone who wants to add new topics to the NGSS during future updates should at the same time identify other topics that should be taken out to make space for the new material. Otherwise, the process that leads to bloated textbooks will just continue. He recommended that we add a section to our white paper about what could profitably be taken out of the NGSS to make room for the recommended additions.

The last area to highlight in his comments is that Dr. Sneider pointed to Appendix H and some of the “foundation boxes” in the main text of the NGSS as places where the nature of science is already highlighted. “I’m not sure why you feel it is not there,” he wrote.

These are thoughtful comments, which we appreciate. There are obviously large areas of overlap in our views of how to improve the NGSS, as well as significant differences. Rather than
try to respond in this post to each of the reservations Dr. Sneider expressed, we will simply refer readers to the white paper. We hope that we provide a sound rationale for each of our suggestions, and as we wrote, we believe that our suggestions could be implemented “without significant disruption to the science curriculum.”

Barriers to reading about science for school
Posted January 5, 2020

A distinguishing feature of the 2010 Common Core State Standards initiative was the increased emphasis on having students read nonfiction books and magazines for school, including reading about science. The name of the standards tells the story: *The Common Core State Standards for English Language Arts (ELA) & Literacy in History/Social Studies, Science, and Technical Subjects.*

An increased emphasis on reading nonfiction reflects the reality that as students enter higher grades they need greater skills and stamina for reading informational text. Reading nonfiction calls for different strategies, vocabularies, and habits than reading fiction. Students need to learn to question the text, and to summarize it for themselves to help them retain information. These skills don’t come automatically, so teachers need to help students become better readers of nonfiction. For understandable reasons the authors of the Common Core believed that the responsibility for teaching students to understand literary nonfiction should be shared by teachers in non-ELA classes, notably in history, social studies, and science classrooms.

However, the glaring absence of any similar language in the Next Generation Science Standards stands as a significant barrier to achieving the Common Core’s goals for reading nonfiction. Science teachers who are guided by the NGSS are simply not encouraged to assign students to read about science, besides reading a textbook or class handout. This is a missed opportunity. After all, in adult life, reading newspapers, magazines and books becomes a vital way for people to maintain and extend their understanding of current science.

What’s more, we recently became aware of a related barrier: the poor availability of science books and magazines in schools. A questionnaire for the 2015 National Assessment of Educational Progress (NAEP) asked eighth grade science teachers, “To what extent does your school system (including your school and school district) provide you with science magazines and books (including digital forms, such as online magazines and books)?” Remarkably, 30% of teachers responded “none,” i.e. no science books or magazines, and another 35% of teachers responded “a small extent.” Is it surprising then, that 40% of these eighth grade teachers indicated they *never* have students read a book or magazine about science?

What about the school library, which also includes encyclopedias and newspapers, in addition to books and magazines? In 2015 45% of grade 8 students reported they *never* used library resources for science class. Similarly, 54% of grade 12 students reported in 2015 *never* using library resources for science class.

Is this the reality that developers of the NGSS wanted to encourage? Probably not. Although the standards writers undoubtedly wanted to see students carrying out investigations and discussions, they probably meant to include reading and writing among the ways that students should acquire, evaluate and communicate information. The NGSS ought to be explicit in asking science teachers to promote more reading about science among students.
There are many wonderful nonfiction science books available, as well as fictional narratives with a strong scientific base. Who will assign them if the standards suggest they are unimportant, that reading and writing don’t merit specific Performance Expectations? Indeed, who will even encourage young people to stretch their minds through science reading? Reading about science or even science fiction can elicit a love of science, provide a way to pursue personal interests, and sometimes foster young people’s identification with scientists and engineers. National standards should make these kinds of encounters between students and ideas more, not less, likely to occur.

Penny and Andy

Why should anyone trust science?
Posted January 16, 2020

A remarkable feature of our current time in history is an increasing distrust of authority, whether the church, the government, or the world of science. It is easy to hypothesize reasons for this distrust, from news of malfeasance to the growth of conspiracy theories on the Internet; but distrust leaves us with very little basis for making public policy. Thus the new book *Why Trust Science* by geologist and historian of science Professor Naomi Oreskes is both timely and welcome. Our recommendations to improve the NGSS by focusing greater attention on the nature of science are well aligned with Oreskes’ findings.

Perhaps best known for co-authoring the scathing critique of climate denial *Merchants of Doubt*, Oreskes nevertheless takes her title question seriously. She begins with a historical overview of the philosophy of science. While this essay can be a heavy slog for the non-specialist, it is enlightening to read how thinkers of the past have wrestled with the question of where science’s special authority—and effectiveness—come from. Is it the elevated and disinterested nature of scientists themselves? Does it lie in an internally consistent and universal scientific method? Simple examination of history can demonstrate weaknesses in either formulation.

Partly by examining cases where science has gone right or wrong—the Limited Energy Theory, which held that higher education or a profession would harm a woman’s reproductive faculties; the eugenics movement; the theory of continental drift; resistance to the idea that birth control pills can cause depression; and arguments over the value of flossing our teeth—Oreskes comes up with her own list of five elements. Oreskes calls these elements “pillars” that, when present, make scientific conclusions something we can rely on. The first is consensus: a fringe idea is less trustworthy than one that has been confirmed and widely endorsed by qualified scientists. The next two, method and evidence, line up with what we expect of science and its vetting. But Oreskes adds two more: diversity and values. A diversity of perspectives from qualified members of the scientific community, she suggests, can help prevent or correct the skewed thinking that has led to faulty and biased “science” in the past. Moreover, Oreskes argues that instead of aspiring to a lofty stance of having no values beyond the pursuit of truth, scientists should be up front about their values, for example that we have a moral responsibility to leave a habitable earth to our descendants on the one hand, or that the free market admits of no compromise on the other.

The most entertaining part of the book lies in its five case examples, listed above, which continue into an argument over the value of sunscreen. In each case, Oreskes shows how
mistakes that arise can be attributed to neglect of one of her five pillars. She then practices what she preaches by opening her argument to response and critique from five different scientists’ voices. These commentaries approach the problem of trust in science from viewpoints ranging from technology as popular evidence that science “works” to the “replication crisis,” which has led to retractions of published papers and established ideas.

For now, let’s keep an eye on the reasons to trust science that Oreskes has offered. People should trust science when scientific experts on the matter in question, building on evidence and using accepted methods, reach consensus after broad discussion and debate among a diverse group of qualified critics. Conclusions emerging from such science are subject to change—in the same way that Einstein added to and improved Newtonian physics—but it is scientific consensus that provides a firm foundation leading to useful and effective increases in understanding the natural world.

Penny and Andy

Resisting scientific misinformation

Posted February 2, 2020

A year ago we posted a free, one-week curriculum unit for grades 6-12 called Resisting Scientific Misinformation. To date there have been over 3,000 downloads. Last week The Science Teacher published an open-access article about our materials, which we hope will result in additional attention to and use of the materials.

Helping students resist scientific misinformation is one of the important missing pieces in the NGSS. As we developed the curriculum materials, this missing piece became an impetus to look for other missing pieces and to write the white paper posted on this site.

It was interesting to learn recently that accepting misinformation is a bigger problem in the United States than in many other nations. As a Boston Globe article reported:

“Nearly 10 percent of the online stories followed most closely by readers in the United States in December came from [untrustworthy news] sites.... Enthusiasm for these sites in the United States far outstrips that of [France, Italy, Germany, and the United Kingdom]. The British are especially resistant; news from unreliable sites made up just 1.2 percent of the most-followed stories among British Web surfers.”

As you might expect, there are a variety of ways to help students with the problem of misinformation; unfortunately, none of them are addressed directly by the NGSS. One approach is to use technology-rich services that help users separate information from misinformation. For example, one can install software from NewsGuard, a startup that evaluates the trustworthiness of Internet news sites, including whether the news site identifies its owners, backers, and authors of articles. A green check mark appears for users who install the software in their web browsers.

Snopes is an easy-to-use website that has evaluated thousands of claims for accuracy, which includes a list of the “hot 50” rumors circulating online. Checkology describes itself as “a browser-based platform where middle school and high school students learn how to navigate today’s challenging information landscape by developing news literacy skills,” and it includes lessons educators can use with classes. A basic version is free, while a premium version requires a subscription.
This list of technology-rich resources to help users sort information from misinformation could be greatly expanded. We use some of them and we’re glad they exist.

At the same time, students need to learn how to judge for themselves the thousands of dubious science-related claims that appear on social media, on TV or radio, or elsewhere. New claims appear all the time. Using our unit (free online), teachers guide students through evaluating for themselves a number of “scientific” claims, some of which turn out to be valid, and others not. The materials focus on four approaches to evaluating claims: a better understanding of advertising, including ways some advertisers try to fool you; asking the right questions about a dubious claim; understanding more clearly how scientists reach their conclusions (including the vital role of such institutions as the Centers for Disease Control and Prevention); and distinguishing between more and less reliable sources of scientific information.

The unit concludes by asking students to investigate a dubious claim by using appropriate websites, and then writing a short synthesis of their findings. Again, we find the NGSS is lacking in asking students to investigate claims for themselves, even such timely issues as the risks and benefits of teenage vaping.

Research on helping people resist misinformation

Posted February 9, 2020

Research about “what works” in education is surprisingly thin. So it is good news for teachers and policymakers that multiple studies demonstrate that various approaches to help people resist misinformation do just that; they work.

One example comes from the Stanford History Education Group (SHEG). You may remember that SHEG documented how poorly most high school students are able to distinguish between fake or misleading online news sites compared to accurate sites. In one summary (2016), Stanford researchers summed up students’ ability to reason about information on the internet in one word: “bleak.”

To address this problem, SHEG developed a set of Civic Reasoning Online curriculum materials. A recent evaluation involving more than 3,000 students showed that those who used the SHEG materials grew considerably more in their ability to evaluate online sources than a control group of students who did not use the materials. *Education Week* published an article about this study last month.

As we developed our free one-week unit for grades 6-12, Resisting Scientific Misinformation, we based the materials on a number of high-quality studies about helping people resist misinformation. For example, a 2017 study demonstrated that educating people about misleading argumentation techniques, such as are often used by advertisers and climate change skeptics, helps reduce the influence of those techniques. Another study found that if people know what a high percentage of climate scientists agree that human beings are the major cause of climate change they become better able to resist climate change misinformation. And we relied on other studies, too.

In short, there is good reason to believe that teachers can help students resist scientific and other types of misinformation. This goal is critically important at a time when social media spreads misinformation at an alarming rate.
We wish that authors of the *Next Generation Science Standards* had focused far greater attention on teaching students to be “careful consumers of scientific and technological information related to their everyday lives,” as urged in *A Framework for K-12 Science Education*, the template for the NGSS. Misinformation of all kinds, notably including scientific misinformation, has become a far more serious problem since that Framework was published in 2012.

There are somewhere between 100,000 and 200,000 teachers of science in grades 6-12 in the United States. By anyone's reckoning, only a tiny fraction of them now focus on teaching students how to distinguish between science fact and science fiction. That is a shame. If national or state science education standards emphasized the importance of teaching students how to judge the quality of information they encounter, a far larger number of teachers would focus on this important topic.

Teaching about the Coronavirus, COVID-19
Posted February 15, 2020

The current coronavirus epidemic, now known as COVID-19, presents an ideal opportunity for teachers to present real-life, cutting-edge, relevant science. Some of the scientific ideas, such as simple messages about hygiene, can be taught at any level, but others are particularly appropriate to middle and high school students.

Some of what there is to be learned falls squarely under existing NGSS core ideas in the life sciences, such as:

- What is a virus? Are viruses alive? How do viruses differ from bacteria?
- Some scientists think the infection might have originally come from snakes, others from armadillos or some other mammal. What arguments do they make? How are scientists communicating these ideas? How does “science” come to a conclusion?
- How might a virus pass from one species to another?
- How might modern transportation technologies allow a human virus to spread?
- What does exponential growth look like? (For older students, what is R_0?)

Then there are other topics that we have suggested should be included in the standards, but are not now, such as learning about vaccines, the importance of scientific institutions and organizations, and the impact of science on policy. For example:

- What are vaccines, and how are they developed? Should we develop a vaccine against COVID-19, and how long will it take?
- How does the current danger to Americans of COVID-19 compare to dangers from measles, Ebola, or the flu? Where and how can people find the answer?
- Which organizations, like WHO and the CDC, are directing the American response to the epidemic? What do these organizations do? Are they trustworthy?
- How are different governments, local and national, such as in China and the U.S., making policy decisions about how to handle the new virus? (Examples include: controlling social media, building hospitals, directing army medics to report to Wuhan, shutting down travel between cities, establishing quarantine sites, screening travelers.) Which of
these actions do students believe are necessary? Which are effective? Who should be making such decisions?

Lastly, misinformation about science is a growing problem that teachers should teach about:

- Are there examples of misinformation about the coronavirus that are being spread online? What are some examples (e.g., articles [here](http://blog.nsta.org/2020/02/05/novel-wuhan-coronavirus-whats-the-real-story/) and [here](http://blog.nsta.org/2020/02/05/novel-wuhan-coronavirus-whats-the-real-story/))?

Some enterprising teachers are already beginning to develop lessons about COVID-19. For example, here is an excellent lesson from high school teacher William Reed, posted on the NSTA blog. (http://blog.nsta.org/2020/02/05/novel-wuhan-coronavirus-whats-the-real-story/)

But note that the lesson’s links to the NGSS fall only under Science and Engineering Practices, and, with a stretch, to Crosscutting Concepts. We agree with the National Science Teachers Association (NSTA) that science should be taught in the context of societal and personal issues (Position Statement [here](http://blog.nsta.org/2020/02/05/novel-wuhan-coronavirus-whats-the-real-story/)), and that students need to learn more about the nature of science than is included in the NGSS (Position Statement [here](http://blog.nsta.org/2020/02/05/novel-wuhan-coronavirus-whats-the-real-story/)). It’s a shame that this lesson on COVID-19, which provides a great opportunity to teach relevant science, has to struggle so hard to “fit” with the standards.

Wouldn’t teachers and students be better off if the NGSS were revised to address some of these ideas more directly? Wouldn’t we all be better off if teaching science in the context of societal and personal issues and with greater attention to the nature of science became core parts of the NGSS, instead of separate priorities promoted by NSTA?

Some state standards are better than the NGSS

Posted February 22, 2020

Education is primarily a responsibility of states and localities. Each state is free to establish its own education standards, and they differ from one state to another. Below we compare science education standards in two states, Washington and Massachusetts.

Washington State is one of 20 states that have adopted the Next Generation Science Standards. A search on the internet leads to a web page titled, [Washington State Science and Learning Standards](http://blog.nsta.org/2020/02/05/novel-wuhan-coronavirus-whats-the-real-story/). There one reads,

The Washington State Science and Learning Standards (WSSLS), previously known as the Next Generation Science Standards-NGSS, are a new set of standards that provide consistent science education through all grades, with an emphasis on engineering and technology.

In other words, in Washington State the NGSS is called WSSLS, but the two documents are otherwise identical. That means the WSSLS has the same strengths as the NGSS, such as establishing the goal that students learn about climate change, but also the same weaknesses. For example, WSSLS does not emphasize teaching science in the context of societal and personal interests. There is no suggestion that students learn about the impact of science on public policy, such as policies to reduce carbon emissions, or how to find accurate information about an unfamiliar science topic, such as vaping.

Although Position Statements from the National Science Teachers Association (NSTA) focus on the importance of taking a broader view of science education than the NGSS, Washington
State’s Science and Learning standards make no reference to NSTA’s recommendations. It is presumably a source of frustration for the NSTA to realize that their Position Statements are not incorporated into the WSSLS or into many other states’ science education standards.

On the other hand, Massachusetts is an example of a state that has taken a different approach. In the state’s Science and Technology/Engineering (STE) Learning Standards, one reads that,

While the Massachusetts STE standards have much in common with NGSS, public input from across the Commonwealth during the development of the standards identified several needed adaptations for Massachusetts:

- Include technology/engineering as a discipline equivalent to traditional sciences.
- Include only two dimensions (disciplinary core ideas and science and engineering practices) in the standards, while encouraging the inclusion of crosscutting concepts and the nature of science in the curriculum.
- Balance broad concepts with specificity to inform consistent interpretation ...

The idea that every science lesson must include the three dimensions identified in the NGSS was rejected by Massachusetts. A result of that modification is to provide teachers with greater flexibility, such as making it easier to plan lessons.

There are other important differences between the NGSS and the Massachusetts STE learning standards. One difference is to more clearly emphasize the importance of reasoning with evidence, including reasoning about claims found in media of any kind. (The word “media” appears dozens of times in the STE standards.) Specifically, in Massachusetts students should learn to:

“Respectfully provide and/or receive critiques on scientific arguments by probing reasoning and evidence and challenging ideas and conclusions, and determining what additional information is required to solve contradictions, and

Evaluate the validity and reliability of and/or synthesize multiple claims, methods, and/or designs that appear in scientific and technical texts or media, verifying the data when possible.” (pp. 66-67)

Another difference is that Massachusetts adopts as a guiding principle the idea that:

“An effective science and technology/engineering program addresses students’ prior knowledge and preconceptions.” (p. 9)

The NGSS, on the other hand, makes no mention of students’ prior knowledge and preconceptions.

Yet another important difference is that preparing students to apply STE knowledge “to real-world applications needed for civic participation” is an explicit goal of the standards (p. 5). This is similar to NSTA Position Statements. However, in the NGSS there is no mention of civic participation.
For a variety of reasons, Massachusetts students perform unusually well on national and international tests, compared to students in other states. There is simply no evidence that adopting science education standards different than—better than—the NGSS harms the state’s students in any way. To the contrary: we believe that establishing better goals for science education helps students.

The NGSS as assessment standards

Posted March 7, 2020

Several people have pointed out that at its heart the NGSS is a set of Performance Expectations (PEs) for students. In other words, the NGSS is intended to identify what students should know and be able to do in science by the time they reach particular grade levels. The theory behind this approach is that states adopting the NGSS will assess students using these performance expectations (which include all three dimensions: disciplinary core ideas, scientific practices, and cross-cutting concepts).

Teachers are free to add to what is in the NGSS. In fact, because these standards are intended for all students, some students’ learning surely will go beyond the standards. For example, students in Advanced Placement classes, who are likely to attend college, are expected to learn more science than what is included in the NGSS.

Architects of the NGSS adopted this approach in part to satisfy teachers who were saying or thinking, “Just tell us what the test will cover and I will teach my students accordingly.” At the same time, designers of the standards wanted to keep the total set of expectations to a realistic size. In other words, they developed the NGSS as a floor or a minimum, not a ceiling.

This is all understandable, yet it begs the question whether the set of minimum expectations that comprise the NGSS is an appropriate set. If we assume that many school systems are hard pressed to teach their students everything in the NGSS—something we have also heard from well informed people—then it seems likely that for many students the totality of what they learn in science will be dictated by what is in the NGSS.

Is it really sensible that students studying in science classes aligned with the NGSS could graduate high school without discussing the relation between science and public policy (e.g., food and water safety, pharmaceutical testing, or regulating nuclear energy)? Or without even knowing the names and functions of key government science agencies like the FDA, the CDC, or the IPCC? Does it make sense that the NGSS does not encourage teachers to prioritize societal and personal concerns related to science—including science-based issues like smoking, vaping, immunizing children, and the quality of supposedly “scientific” information in advertising and social media? These are examples of goals or expectations missing in the NGSS.

In contrast, the NGSS expects all students to be able to “evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.” Also, according to the NGSS all students should be able to “use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.

Think about these priorities the next time you are on a bus or subway or in some other place with dozens of people representing a broad slice of the American population. Are the NGSS
expectations what you think is the most important science for every adult to know? Are these the right expectations for all students?